If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+22y-10=0
a = 4; b = 22; c = -10;
Δ = b2-4ac
Δ = 222-4·4·(-10)
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{161}}{2*4}=\frac{-22-2\sqrt{161}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{161}}{2*4}=\frac{-22+2\sqrt{161}}{8} $
| 4y+22y-10=0 | | 3x^+2=8 | | -6(2x+7)=12x+42 | | X²-12x+36=0 | | x/8+10=16 | | 3x2/8=6 | | X-5y=11y= | | 2x-3+3x=-28 | | 4y+1=2y-2+y+3 | | 6/5x=4/5x+6 | | 1256=(3.14x5)^2 | | 39-8n=(3+4n)+3n | | 7.2=1.3z-1.3z+0.6 | | -3t+7=4t-19 | | r/4=-32 | | 4x(x-15)=0 | | -1.5(r+3)=66 | | -3/2u=21 | | 7x-14=6x+1 | | 5(x-7)=x+5+2x | | -10=5/3w | | |10x-8|=|6x+13| | | 2(x-7)+6x=34 | | 97-w=175 | | 4x-7-2x+2=11 | | -2(x-4)+6=12 | | 3(2r+14)=2 | | Y=2/7x+8 | | 2x+22=4x-2 | | 15k^2+19k-6=0 | | 8x-(12-x)=51 | | 92-u=182 |